2m/PHY-150 (Th) Syllabus-2023

2025

(May-June)

FYUP: 2nd Semester Examination

PHYSICS

(Minor)

(Electricity and Magnetism, Optics and Electronics)

(PHY-150)

(Theory)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any eight questions

1. (a) Two small identical conducting spheres have charges $2 \cdot 0 \times 10^{-9}$ C and -0.5×10^{-9} C, respectively. When they are placed 4 cm apart, what is the force between them? If they are brought into contact and then separated by 4 cm, what will be the force between them?

	(b)	that a uniformly charged solid sphere acts as if the whole charge were concentrated at its centre.	4
2.	(a)	Obtain the integral and differential forms of Gauss' law in the presence of dielectric.	4
	<i>(b)</i>	An infinitely long solenoid has 5000 turns per metre of its length. If a current of 0·1 ampere flows through it, then find the strength of the magnetic field at the centre and at one end of the solenoid. Given, $\mu_0 = 4\pi \times 10^{-7}$ H/m.	3
3.	vacu phys	te down the Maxwell's equations in turn and in dielectric medium. Give the sical significance of Maxwell's time- ring equations in dielectric medium. 3+4	=7
4.	(a)	An alternating e.m.f. Voeint is applied	

vacuum and in dielectric medium. Give the
physical significance of Maxwell's time-
varying equations in dielectric medium. 3+4=
(a) An alternating e.m.f. $V_0e^{i\omega t}$ is applied
to the ends of the circuit containing resistance R , inductance L and capacitance C in series. Find the impedance and voltage of the circuit.
(b) An a.c. circuit has inductance $L=10$ mH, capacitance $C=10 \mu\text{F}$ and resistance $R=10 \Omega$ in series. Calculate the natural frequency, resonant frequency and impedance of the circuit at resonance.
/1244

5.	Using Fermat's principle, establish the laws of reflection and refraction at a plane boundary. $3\frac{1}{2}+3\frac{1}{2}=7$
6.	With the help of ray diagrams, explain the cardinal points of a thick lens.

- 7. (a) Find the focal length of a combination of two thin lenses of focal lengths f_1 and f_2 separated by a distance d.
 - Derive the lens-maker formula by matrix method.
- **8.** (a) Describe the system matrix of a thick lens and hence obtain it for a thin lens. 3+1=4
 - (b) Consider a plano-convex lens of refractive index 1.5 and thickness 0.6 cm. The convex surface has a radius of curvature of 2.5 cm and is facing the incident light. Construct-
 - (i) the refraction matrix for the front surface;
 - (ii) the refraction matrix for the back plane surface:
 - (iii) the translation matrix for translation through the lens. 1+1+1=3

7

3

9.	(a)	Convert the following binary number into decimal number and decimal number into binary number: $1\frac{1}{2}+1\frac{1}{2}=3$ (i) $(11011\cdot101)_2$ (ii) $(29\cdot625)_{10}$
	(b)	Using 2's complement scheme method, evaluate (i) $A+B$, (ii) $A-B$, (iii) $-A-B$, where $A=001001$ and $B=000110$. $1+1\frac{1}{2}+1\frac{1}{2}=4$
ιο.	ANI	w neatly the circuit diagrams for realising and OR logic gates using diodes and lain their operations. $3\frac{1}{2}+3\frac{1}{2}=7$
11.	(a)	Simplify the Boolean expression $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ 2
	(b)	Draw a logic circuit using NOR gates to implement the Boolean expression $AB + \overline{BC}$
	(c)	What is meant by early effect in a transistor?
12.	(a)	What is a p - n junction diode? How is depletion region formed in a p - n junction diode? $1+2=3$
	48. 1	

(b) Draw the circuit diagram of a p-n-p transistor in CE mode. Explain how $\beta_{d.c.}$ and $\beta_{a.c.}$ of the transistor can be obtained from these curves. 1+3=4
